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Aspects of large-scale organized structures in sink flow turbulent and reverse-
transitional boundary layers are studied experimentally using hot-wire anemometry.
Each of the present sink flow boundary layers is in a state of ‘perfect equilibrium’
or ‘exact self-preservation’ in the sense of Townsend (The Structure of Turbulent
Shear Flow, 1st and 2nd edns, 1956, 1976, Cambridge University Press) and Rotta
(Progr. Aeronaut. Sci., vol. 2, 1962, pp. 1–220) and conforms to the notion of ‘pure
wall-flow’ (Coles, J. Aerosp. Sci., vol. 24, 1957, pp. 495–506), at least for the turbulent
cases. It is found that the characteristic inclination angle of the structure undergoes a
systematic decrease with the increase in strength of the streamwise favourable pressure
gradient. Detectable wall-normal extent of the structure is found to be typically half
of the boundary layer thickness. Streamwise extent of the structure shows marked
increase as the favourable pressure gradient is made progressively severe. Proposals
for the typical eddy forms in sink flow turbulent and reverse-transitional flows are
presented, and the possibility of structural self-organization (i.e. individual hairpin
vortices forming streamwise coherent hairpin packets) in these flows is also discussed.
It is further indicated that these structural ideas may be used to explain, from a
structural viewpoint, the phenomenon of soft relaminarization or reverse transition of
turbulent boundary layers when subjected to strong streamwise favourable pressure
gradients. Taylor’s ‘frozen turbulence’ hypothesis is experimentally shown to be
valid for flows in the present study even though large streamwise accelerations
are involved, the flow being even reverse transitional in some cases. Possible
conditions, which are required to be satisfied for the safe use of Taylor’s hypothesis
in pressure-gradient-driven flows, are also outlined. Measured convection velocities
are found to be fairly close to the local mean velocities (typically 90 % or more)
suggesting that the structure gets convected downstream almost along with the mean
flow.

1. Introduction
For turbulent shear flows, the role of large-scale organized motions assumes great

importance, as they are responsible for major transport of mass, momentum, energy
and species across large extents of the flow (for a comprehensive review of coherent
structures, see Hussain 1983; Robinson 1991). While the literature is replete with
the study of organized structures or eddy structures in zero-pressure-gradient (ZPG)
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turbulent boundary layers, the effect of the streamwise pressure gradient on the eddy
structure – especially the favourable pressure gradient (FPG) – is not so commonly
studied. The present work focuses on large-scale structures in turbulent and reverse-
transitional sink flow boundary layers. Towards this we begin with a brief survey
of the literature on organized structures in turbulent boundary layers, and since
the literature is vast (dealing with different aspects of organized motions), only the
relevant references will be discussed.

Townsend (1976) has postulated the existence of the so-called attached eddies
in the case of turbulent boundary layers that represent the large-scale organized
motion. Smoke-flow visualization studies by Head & Bandyopadhyay (1981) have
revealed that a ZPG turbulent boundary layer indeed possesses a large population
of identifiable hairpin-type vortices that closely resemble the attached eddies of
Townsend (1976). From the photographs, they have reported an average eddy
inclination of about 45◦ from the wall which mainly corresponds to the outer region
of the flow.

Following this, Perry & Chong (1982) have shown that many aspects of near-wall
turbulent statistics such as intensities and spectra may be calculated by postulating
a population of hairpin or horseshoe or � vortices (inclined at 45◦ to the wall).
Subtle differences between these eddy types are discussed by Robinson (1991). Perry,
Henbest & Chong (1986) have further extended the approach of Perry & Chong
(1982) to include the outer region of the turbulent boundary layer as well. This
attached-eddy approach has been used further by Perry, Marusic & Li (1994) for
addressing the closure problem and by Perry, Marusic & Jones (2002) for predicting
the streamwise evolution of turbulent boundary layers in arbitrary pressure gradients.

Brown & Thomas (1977) have investigated the inclination angle of the large-scale
structure in a ZPG turbulent boundary layer using hot-wire (HW) anemometry. They
have used an array of four HW sensors, separated in the wall-normal direction, in
conjunction with a hot-film sensor (for wall-shear stress signature) placed on the wall.
The temporal cross-correlation coefficient between the wall-shear stress fluctuation
and the streamwise velocity fluctuation has been measured by acquiring signals from
all the five sensors simultaneously. For each particular wall-normal distance, the
streamwise location corresponding to peak value of the temporal cross-correlation
coefficient has been obtained by trial and error. From these measurements, they have
shown that the average inclination of the large-scale structure is about 18◦ and that the
convection velocity of the structure is about 0.8 times the free-stream velocity. Similar
results for the structure inclination have been reported by Wark & Nagib (1991).

Adrian, Meinhart & Tomkins (2000) have presented extensive particle image
velocimetry (PIV) measurements and analysis of the vortex structure of a ZPG
turbulent boundary layer. They have shown that hairpin vortices in a ZPG turbulent
boundary layer self-organize to form what are called spatially coherent vortex packets,
and these packets of varying sizes and ‘ages’ populate the entire boundary layer. They
have noted that the inclinations of individual hairpins in these packets are small
close to the wall (typically 15◦ or so) and increase to large angles (typically 45◦ or
even more if the packet is in the outer layer) away from the wall. The ‘heads’ of
hairpins in a given packet, close to the wall, appear to be located on a ramp-like line
which has a shallow inclination of about 12◦ with respect to the wall; this inclination
may be referred to as the packet inclination. The length and the wall-normal extent
of these packets are observed to depend on their ‘age’. It is also observed that the
growth of smaller and younger packets in the environment of larger and older packets
(which were generated upstream) is a prominent feature of the logarithmic region of
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the mean velocity profile for a ZPG turbulent boundary layer flow. The number of
hairpins in a packet is often of the order of 10. It is also remarked in this paper that
the two-point correlation studies such as those of Brown & Thomas (1977) mostly
relate the measured structure inclinations to the ‘backs’ of outer layer bulges (see
figure 4 from Brown & Thomas 1977) and not generally to the packet inclination
mentioned above. It is further noted that the outer layer bulges are essentially related
to the hairpin packets especially at low Reynolds numbers, suggesting that for low-
Reynolds-number ZPG turbulent boundary layer flows, it may not be inappropriate
to relate the measured structure inclinations to the packet inclinations.

Following this work, Christensen & Adrian (2001) have shown that the
instantaneous picture of self-organization of hairpins into packets is valid even in the
mean sense. They have used linear stochastic estimation for estimating conditionally
averaged two-dimensional velocity field from the instantaneous snapshots of a
turbulent channel flow at two different Reynolds numbers. Also they have noted that
the structural features of turbulent pipe flow, channel flow and boundary layers (ZPG)
are very similar below y/δ =0.6, i.e. mainly in the inner and overlap regions. Their
results show that even in the average sense there exists dominant self-organization of
hairpins into vortex packets that typically have shallow inclinations of about 12◦–13◦

with the wall. This work therefore connects the instantaneous and mean viewpoints
and is thus important in that respect.

Marusic (2001) has shown that the attached-eddy calculations of a ZPG turbulent
boundary layer are in better agreement with the experiments if one uses packets of
slanted �-eddies instead of ordinary �-eddies as seen in figure 3 of Marusic (2001).
These structures are consistent with those observed by Adrian et al. (2000). It is
further remarked that results for the outer layer are relatively insensitive to the use
of packets or individual hairpins; results in the near-wall region (inclusive of the
log layer) however show marked improvement when hairpin packets are used for
calculations.

Colella & Keith (2003) have performed experiments on a flat plate in a towing
tank with water as the working fluid. They have used an array of shear stress
sensors on the wall in conjunction with a single HW probe to measure the cross-
correlation between fluctuating wall-shear stress and streamwise velocity fluctuation.
Their inferred structure angle corresponds well with that reported by Brown &
Thomas (1977).

Ganapathisubramani, Longmire & Marusic (2003) have presented stereo-PIV
measurements in streamwise-spanwise planes of a ZPG turbulent boundary layer.
They have used a feature extraction algorithm for identifying large-scale structures
all across the boundary layer. They have observed that the logarithmic layer contains
significant streamwise spatial organization of hairpin vortices into coherent packets
extending up to about 2δ in the streamwise direction. This is consistent with the
findings of Adrian et al. (2000). Interestingly however, they have reported a breakdown
of such structural organization beyond the log layer (in the wake region of the outer
layer) where individual hairpins exist but no packets (this observation is shown
to be consistent with the calculations of Marusic 2001). They have concluded this
on the basis of the absence of long low-momentum zones which are considered
to be a typical signature of the hairpin packets. They have also quantified the
contribution of coherent packets to the Reynolds shear stress which they have
observed to be more than 25 % (of the total Reynolds shear stress), indicating that
the packets are responsible for a significant portion of turbulent transport. Following
this study, Ganapathisubramani et al. (2005) have presented extensive two-point
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velocity correlation data obtained from stereo-PIV investigations at various heights
in a ZPG turbulent boundary layer flow. They have found that the contours of various
correlations in streamwise, cross-stream and inclined planes (45◦ and 135◦) may be
interpreted in support of the hairpin packet paradigm and are in general consistent
with the previous findings of Ganapathisubramani et al. (2003).

Recently Marusic & Heuer (2007) have conducted structure inclination angle
measurements in the logarithmic region of laboratory ZPG turbulent boundary
layers as well as in the near-neutral atmospheric surface layer at the Utah salt
flats. Their results show that the inferred structure inclination angle is about 14◦–15◦

and is remarkably invariant over the wide range of Reynolds numbers (almost three
decades) investigated.

A highly resolved direct numerical simulation (DNS) of a spatially developing
ZPG boundary layer flow going from the Blasius case to fully turbulent flow through
an intermediate transition regime has been carried out very recently by Wu &
Moin (2009). Their results show remarkable evidence (though instantaneous) for
the existence of hairpin vortices populating the entire turbulent boundary layer (see
figures 3e and 3f from their paper). Furthermore it is noted in this paper that the
hairpins are mostly symmetric as opposed to the previous notion that symmetric
hairpins are rarely formed (see Robinson 1991).

The point to be noted in all the above-mentioned investigations is that the emphasis
has mostly been on ZPG turbulent boundary layer flow, perhaps because even for this
canonical flow, the structural details have not been fully understood. It appears that
there have not been as systematic and extensive studies on pressure-gradient-driven
turbulent boundary layer flows that have been reported in the literature as for the
ZPG flows. There are only very few HW anemometry studies on the inclination
of structures in adverse-pressure-gradient (APG) turbulent boundary layer flows –
such as those of Krogstad & Sk̊are (1995) and Thomas & Brown (G. Brown 2009,
private communication). Krogstad & Sk̊are (1995) have presented two-point velocity
correlation measurements in (i) an APG near-equilibrium turbulent boundary layer
that is close to separation and (ii) a ZPG turbulent boundary layer. They have
noted that the structure inclination is about 45◦ almost all through the boundary
layer in the APG case (see figure 5a from Krogstad & Sk̊are 1995). This is to be
contrasted with the corresponding ZPG results in which the structure inclination angle
is relatively shallow close to the wall and reaches the typical value of about 45◦ only
in the outer region of the turbulent boundary layer (see figure 5b from Krogstad &
Sk̊are 1995). These results correspond to the wake region of the outer layer (figure 1
from Krogstad & Sk̊are 1995) and therefore are related to what are called type B
eddies in the classification of Perry et al. (2002). Very recently Lee & Sung (2009)
have reported a comparative DNS study of the structure of ZPG and APG turbulent
boundary layers with Rθ in the range 1000–1400. Their results show evidence towards
structural organization in the form of streamwise coherent hairpin packets similar to
what Adrian et al. (2000) and Christensen & Adrian (2001) have reported. Further
Lee & Sung (2009) have noted that the characteristic inclination of instantaneous as
well average (linear-stochastically estimated) vortex packets increases in APG (about
18◦) in comparison with that in ZPG (about 13◦). They have also made an interesting
observation that the average streamwise spacing between the hairpins in a packet,
when scaled with the boundary layer thickness, increases in an APG as compared
with the ZPG case.

There appears to be hardly any structural investigation concerning FPG flows with
the exception of Blackwelder & Kovasznay (1972) to name one of the few. They have
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investigated large-scale motion inside a relaminarizing turbulent boundary layer for
which the FPG changes continuously in the streamwise direction (non-equilibrium
flow). From the measured contours of space–time correlations they have concluded
that the large-eddy structure does not change significantly even after passing through
the strongest part of the FPG, save for some interesting aspects of the contours
involving fluctuating component of the wall-normal velocity. They have not however
reported the structure inclination measurements for their FPG flow.

Thus it would be of interest, perhaps as a first step, to systematically characterize
the large-scale structure orientation with pressure gradient as a parameter. This would
shed light on the behaviour of turbulent boundary layer flows in pressure gradients.
Furthermore, such results would be useful as input for modelling the near-wall
region of pressure-gradient-driven turbulent boundary layers. Similar results in ZPG
situations have been used as input for modelling (see Piomelli et al. 1989; Marusic,
Kunkel & Porté-Agel 2001).

It is clear that such characterization of the large-scale structure should be carried
out, at least initially, in a pressure-gradient-driven turbulent boundary layer flow
where the upstream history effects are negligibly small. This would ensure that the
response of the structure is simply related to the changes in pressure gradient without
the additional complication of history effects. Thus one must focus attention on
what are known as equilibrium or self-preserving turbulent boundary layer flows
(Rotta 1962; Townsend 1976). The simplest (i.e. perhaps the easiest to establish
experimentally) equilibrium turbulent boundary layer flow is the so-called sink flow –
where the boundary layer flow experiences streamwise acceleration inside a convergent
channel bounded by smooth and plane walls (see figure 1 from Dixit & Ramesh 2008).
One may observe that all the mean streamlines of this flow are radial, intersecting each
other at the location of the apparent line sink. Further, mean edge of this turbulent
boundary layer is also a mean streamline, indicating that the mean entrainment
into the turbulent boundary layer is zero. Interestingly, this is the only smooth-
walled turbulent boundary layer configuration where the boundary layer is in ‘perfect
equilibrium’ (see Rotta 1962; Townsend 1976); i.e. the mean velocity and the turbulent
statistics scale perfectly with inner as well as outer ‘local’ flow scales as may be seen
from the equations of motion. Furthermore this flow may be aptly referred to as the
‘pure wall-flow’ in the sense of Coles (1957), since the wake part of the mean velocity
profile is absent there. These properties make the sink flow configuration a natural
choice for the present systematic investigation of relationship between the large-scale
structure and the pressure gradient. For a detailed account of sink flow turbulent
boundary layers, the reader is referred to Jones, Marusic & Perry (2001) and Dixit &
Ramesh (2008).

One of the common beliefs is that while outer layer is the one that primarily
responds to the applied pressure gradient, inner layer remains largely universal (Coles
1956). Now in the case of sink flow turbulent boundary layers, it has been shown that
as pressure gradient is made progressively more favourable, there is a concomitant
shift of the mean velocity profile from the so-called universal log law (see Dixit &
Ramesh 2008). Mean velocity profile in the overlap region is then describable by non-
universal logarithmic laws where the parameters of these log laws become systematic
functions of the pressure gradient parameter �p (to be defined in § 3). Spalart &
Leonard (1987), Nickels (2004) and Chauhan, Nagib & Monkewitz (2007) have also
noted such non-universality in the log law for pressure-gradient-driven turbulent
boundary layer flows. In view of this, it is natural to ask the question whether
there are corresponding changes in the large-scale structure (in comparison with the
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ZPG turbulent boundary layer) that are consistent with the observed non-universal
behaviour of the inner region. This becomes the primary motivation for exploring
large-scale structures in the present work. Furthermore, it appears that the structural
details for reverse-transitional boundary layers have not been studied so far in the
literature, and we attempt to do so in the present study within the framework of sink
flow layers.

In the present paper, results of a systematic experimental investigation of some
aspects of the large-scale structure in sink flow boundary layers are presented. The
boundary layers under investigation are mostly turbulent except for the two cases
that may be identified as being reverse transitional. The outline of the paper is as
follows. Section 2 gives details of the experimental set-up and procedures used in the
present work. This is followed in § 3 by the basic analysis of experimental data. This
establishes conditions under which the present structural investigations are performed.
Section 4 describes the main analysis of experimental data and the results pertaining
to various aspects of the large-scale structure. Plausible structural models for sink
flow turbulent boundary layers based on the present experimental results and the
possibility of structural self-organization are also discussed therein. The phenomenon
of relaminarization of a turbulent boundary layer by a strong streamwise FPG is
examined from the structural viewpoint in the light of the present experimental results
in § 5. The validity of Taylor’s frozen turbulence hypothesis, as used in the present
study, is examined in some detail in § 6. Section 7 gives details of the investigation
of structure convection velocity and is followed by § 8 wherein conclusions are
presented.

2. Experimental set-up and procedures
Experiments were carried out in an open-return wind tunnel (test-section size of

300 mm × 300 mm) at the Department of Aerospace Engineering, Indian Institute of
Science. Details of the tunnel are given in Dixit & Ramesh (2008).

For the present investigations, the same experimental sink flow set-up, as described
in Dixit & Ramesh (2008), was used (see figure 1a). Measurements were done at
three different streamwise stations in the sink flow region with eight different pressure
gradients investigated at each station. The pressure gradient was varied by changing
the free-stream velocity in the test section. For measuring the wall-shear stress, the
so-called surface hotwire (SHW) probe was used, which consists of a HW sensing
element soldered to the tips of two sharp needles that protrude out from the surface
of a Teflon plug which is fitted flush with the test surface. The height h of the
sensing element from the wall was not measured directly but was estimated indirectly,
from calibration of the SHW probe in ZPG flow (see Dixit & Ramesh 2008), to
be approximately 60 μm (i.e. h+ = hUτ/ν ranging from 0.62 to 3.57 over the entire
range of experiments) so that the sensor always stayed in the viscous sublayer for
all the flows under consideration. Here Uτ =

√
τw/ρ is the friction velocity (τw is

the wall-shear stress and ρ is the density of fluid) and ν is the kinematic viscosity of
fluid. Further details of the SHW probe and its calibration can be found in Dixit &
Ramesh (2008). Streamwise velocity was measured by a single HW probe.

Sensor elements for both the SHW and HW probes were Pt–Rh Wollaston wires
with 5 μm core diameter. The active length l of the sensors was about 0.8 mm so that
l+ = lUτ/ν varied from 8 to 48 over the entire range of experiments. The length-
to-diameter ratio (l/d) of the sensing elements was about 160 which was somewhat
less than the usually recommended value of about 200 (Ligrani & Bradshaw 1987;
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Figure 1. (a) Schematic of the experimental sink flow set-up. The figure is not to scale. All
dimensions are in metres. (b) Side view of the probe arrangement used for measurement of
the cross-correlation coefficient Rτu(�x,y).

Hutchins et al. 2009). This choice of l/d ratio was made to keep l+ somewhat in
control over the entire range of experiments. Very recently, Hutchins et al. (2009)
have demonstrated that a reduction in the l/d ratio from 200 to 100 can cause
serious attenuation of the streamwise turbulence intensity all across the boundary
layer because of significant end conduction effects even though the l+ values are
acceptably low (about 22). In view of this, it was considered important to validate
the performance of the present HW probe in a known flow. For this purpose,
measurements were made with the same HW probe in a ZPG turbulent boundary
layer flow having approximately the same Reynolds number (Rθ = 2843) as that of
the second flow (Rθ = 2900) of DeGraaff & Eaton (2000). The measured turbulence
intensity distribution showed excellent agreement all through the boundary layer with
the corresponding intensity distribution from DeGraaff & Eaton (2000), which was
measured using laser Doppler velocimetry (LDV). Thus it appears unlikely that the
present use of the l/d ratio of about 160 can cause any serious problem.

Each sensor was operated by a constant-temperature HW anemometer
manufactured by Sunshine Industries (Bangalore, India). Overheat ratio was kept
at 1.5 for the HW sensor and 1.3 for the SHW sensor. Lower overheat ratio was used
in the case of the SHW sensor to reduce conduction heat loss to the test surface.
Fluctuating components of the signals from the SHW and the HW were amplified
(amplification factor of 50) to improve the dynamical range. Signals were acquired
using IOtech DaqBook (2000 series, 16 bit, 200 kHz; Data Acquisition System) and
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the data acquisition software DASYLAB (version 7.0). Details regarding the sampling
rate, duration and the like are given later in this section.

For the present study, the HW probe was located 40 mm downstream of the SHW
probe in the same x–y plane where x is the streamwise coordinate and y is the wall-
normal coordinate (see figure 1b). This choice of the spatial separation will be justified
in § 6. Each measurement station is identified by the location of the SHW probe (L1,
L3 and L4 in figure 1a), and eight different pressure gradients investigated at each
station are denoted as PG1–PG8. Locations of the HW probe (40 mm downstream
of each SHW probe) are denoted by M1, M3 and M4 respectively (not shown in
figure 1a). The HW probe was traversed in the wall-normal direction using a dial-type
height gauge (Mitutoyo, Japan) with a least count of 0.01 mm. Calibration of the HW
probe was done in situ in the sink flow free stream where free-stream velocity U∞ was
known from the measured pressure distribution. Extensive measurements of friction
velocity Uτ were done by Dixit & Ramesh (2008), and a complete mapping of Uτ over
the entire sink flow region (stations L1–L5 in figure 2 from Dixit & Ramesh 2008)
with various spatial locations and free-stream velocities was available from that study.
Since the same set-up was used in the current work, the SHW probes in this study
were calibrated in situ against those known values of Uτ (or τw). Signals from both
the probes (HW and SHW) were acquired simultaneously with zero initial time delay.
The spatial cross-correlation coefficient Rτu(�x,y) was obtained from these signals
using Taylor’s frozen turbulence hypothesis (Taylor 1938). The following discussion
introduces relevant details of the procedure by which Rτu(�x,y) was obtained in
course of the present work.

With τ (t) denoting the fluctuating wall-shear stress obtained from the SHW signal
and u (t) denoting the fluctuating streamwise velocity component obtained from the
HW signal (see figure 1b), the spatio-temporal cross-correlation coefficient between
τ (t) and u (t), is defined as

Rτu (x0, �x0, y, t0, �t) =
τ (x0, t0) u (x0 + �x0, y, t0 + �t)√

τ 2
√

u2
. (2.1)

Here the overbars denote long-time averages. In (2.1), x0 is the location of the SHW
sensor; �x0 is the streamwise spatial separation between the SHW and HW sensors
(�x0 > 0 implies the HW downstream of the SHW); y is the wall-normal location
of the HW sensor; t0 is the initial time instant at which simultaneous acquisition of
both the signals is started; and �t is the time delay given to the u (t) signal. Since we
are presently studying statistically stationary turbulent signals, the initial time instant
t0 is insignificant and can be conveniently set to zero (t0 = 0). Furthermore in the
present study, �x0 is fixed at +40 mm. Therefore (2.1) may be written as

Rτu (x0, y, �t) =
τ (x0) u (x0 + �x0, y, �t)√

τ 2
√

u2
. (2.2)

Note that a positive time delay �t given to the u (t) signal amounts to moving
upstream from the HW sensor by distance �xp = −Uc�t according to Taylor’s frozen
turbulence hypothesis (see figure 1b). Here �xp may be called the projection distance.
Taylor’s hypothesis assumes that the turbulence field convects downstream without
appreciable distortion, and hence a time series obtained from a point probe may be
converted to a space series using the transformation

xp = −Uct or �xp = −Uc�t, (2.3)
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where Uc =Uc(y) is the local convection velocity. The space series so obtained may
be considered to be a one-dimensional slice through the turbulence field for the
particular fluctuating quantity under consideration. With Taylor’s hypothesis applied,
the u (t) signal at (x0 + �x0) with a time delay of �t is equivalent to the u (t) signal
at (x0 + �x0 + �xp) with zero time delay (�t = 0). If we denote (�x0 + �xp) by �x

as shown in figure 1(b), then (2.2) may be rewritten as

Rτu (x0, �x, y) =
τ (x0) u (x0 + �x, y)√

τ 2
√

u2
. (2.4)

Notice that �xp is by definition negative (for a positive time delay �t) and therefore
�x < �x0 (see figure 1b). Thus Taylor’s hypothesis enables surrogate estimation
of the spatial cross-correlation coefficient from the time-series data; the validity
of Taylor’s hypothesis has been investigated and confirmed experimentally for the
present measurements as discussed further in § 6. It is clear that as the time delay �t

in the HW signal is progressively increased, one moves to increasingly larger distances
upstream of the HW, i.e. closer to the SHW. Figure 1(b) clarifies the nomenclature
used in the above-given discussion. In what follows we shall call the spatial cross-
correlation coefficient Rτu (x0, �x, y) simply the cross-correlation coefficient Rτu(�x,y)
unless stated otherwise.

For the convenience of discussion, only positive time delay has been discussed
above. It is however clear that a negative time delay may as well be given to the HW
signal that would project it downstream of the HW probe. Such a delay would thus
give information about Rτu(�x,y) downstream of the HW. In the present work, both
types of delays have been used to derive information about the large-scale structure.

In the present study, both the HW and the SHW were calibrated, and therefore
fluctuating voltage signals from them were converted to corresponding fluctuating
quantities. To assess the linearization approximation involved in such a conversion,
the following exercise was carried out. Root-mean-squared (r.m.s.) values of the
streamwise velocity fluctuation u (t) and the wall-shear stress fluctuation τ (t) were
calculated (a) by applying appropriate King’s laws to the instantaneous voltage signals
to obtain instantaneous quantities and then subtracting out the mean from them and
(b) by directly using linearization approximation to obtain fluctuating quantities from
the corresponding fluctuating voltages. It was found that for the weakest pressure
gradient PG1 (i.e. the highest-Reynolds-number case in the present study), typical
differences between the r.m.s. values of both u (t) and τ (t) obtained by the above
two methods were of the order of 3 % each. For the strongest pressure gradient PG8
(i.e. the lowest-Reynolds-number case in the present study), these differences were
found to be about 6 % and 10 % respectively. Given that the r.m.s. values of u (t)
and τ (t) are an order of magnitude smaller in the case of PG8 than in the case of
PG1, higher percentage differences in the PG8 case are not as severe as they appear.
In view of this, it was decided to use the linearization approximation in the present
study. This implied that the calculation of Rτu(�x,y) may be carried out simply with
the fluctuating voltages, since the constants of proportionality would cancel out from
the numerator and the denominator. It was confirmed from the measured data that
this indeed was the case. Therefore in this study, all values of Rτu(�x,y) have been
obtained by directly correlating the fluctuating voltages from both the sensors.

The main requirement in an investigation involving measurement of Rτu(�x,y) is to
ensure its convergence. If the total sampling duration is sufficiently long, then the time
averaging involved in evaluation of Rτu(�x,y) takes into account sufficiently large
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U∞ ms−1

Flow code M1 M3 M4 T (s) fs (kHz) fkmax at M4 (kHz)

PG1 16.66 18.68 19.93 60 10 3.08
PG2 13.93 15.44 16.30 60 10 2.80
PG3 10.88 12.04 12.69 90 6 1.83
PG4 7.32 8.42 8.80 90 6 1.08
PG5 5.95 6.74 6.93 120 4 0.65
PG6 4.46 4.91 5.12 120 4 0.31
PG7 3.54 3.93 4.23 160 3 0.17
PG8 2.82 3.33 3.43 160 3 0.08

Table 1. Sampling parameters adjusted for the variation in the free-stream velocity over the
entire range of experiments: U∞ is the free-stream velocity; T is the sampling duration; fs is
the sampling rate; and fkmax is the maximum Kolmogorov frequency scale.

number of organized activities, and this stabilizes the limiting value of Rτu(�x,y).
For higher free-stream velocities, large number of organized activities are convected
over the sensors in a relatively short time, and therefore relatively smaller sampling
duration may be sufficient to ensure adequate convergence of Rτu(�x,y). However
if the free-stream velocity is reduced (as is done in the present study to alter the
pressure gradient), larger sampling duration is required for averaging over, say, the
same number of organized activities. Thus the sampling duration needs to be adjusted
for the free-stream velocity variation to ensure adequate convergence of Rτu(�x,y).
Furthermore, as the free-stream velocity reduces, the Reynolds number of the sink flow
boundary layer comes down (in the present study), and the corresponding Kolmogorov
frequency scale fk (reciprocal of the Kolmogorov time scale tk =(ν/ε)1/2, where ε is
the dissipation rate of turbulence kinetic energy in kinematic units) decreases. This
permits appropriate reduction in the sampling rate with reduction in the free-stream
velocity. To summarize, with the reduction in free-stream velocity the sampling
duration should increase, and the sampling rate may be decreased appropriately.

Table 1 gives the sampling parameters along with the corresponding free-stream
velocities for all the eight pressure gradients (PG1–PG8) at all the three measurement
stations. It was found that a sampling duration of T = 20 s was sufficient to yield
well-converged values of Rτu(�x,y) for flow PG1 (this roughly corresponds to about
20 000 boundary layer turnover times, i.e. T U∞/δ = 20 000). This implies that for PG8
if averaging is to be done, say, over the same number of organized activities as in PG1,
sampling duration T should be about 116 s (provided that the boundary layer thick-
nesses are not very different; see table 2). Table 1 indicates that the actual values of
sampling duration used are larger than the above-mentioned values. This therefore en-
sures adequate convergence of the values of Rτu(�x,y) in all flows in the present study.

Also given in table 1 are the estimates of the maximum Kolmogorov frequency
scale fkmax (which is the reciprocal of the minimum Kolmogorov time scale tkmin) at
HW station M4. These are obtained from the dissipation estimates calculated from
one-dimensional power-density spectra; typical power-density spectra are shown in
the next section. Even though such estimates of dissipation are known to be somewhat
erroneous in the immediate vicinity of the wall because of anisotropy effects, their use
in the present context is meant only as a rough guideline (see Ligrani & Bradshaw
1987). It may be seen from table 1 that the Nyquist criterion is well satisfied for all
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HW probe at M1

Flow K × 106 U∞ (ms−1) Cf �p δ (mm) Rδ∗ Rθ H

PG1 0.77 16.66 0.00410 −0.00830 16.37 1731 1301 1.33
PG2 0.95 13.93 0.00398 −0.01065 16.69 1683 1248 1.35
PG3 1.23 10.88 0.00403 −0.01360 17.20 1191 901 1.32
PG4 1.74 7.32 0.00469 −0.01533 18.14 853 597 1.43
PG5 2.18 5.95 0.00468 −0.01928 15.84 755 510 1.48
PG6 2.90 4.46 0.00492 −0.02373 18.22 613 396 1.55
PG7 3.55 3.54 0.00564 −0.02371 15.14 445 279 1.60
PG8 4.52 2.82 0.00603 −0.02734 16.25 370 219 1.69

HW probe at M3

Flow K × 106 U∞ (ms−1) Cf �p δ (mm) Rδ∗ Rθ H

PG1 0.77 18.68 0.00405 −0.00847 14.93 1760 1325 1.33
PG2 0.95 15.44 0.00399 −0.01062 15.08 1490 1099 1.36
PG3 1.23 12.04 0.00400 −0.01371 15.77 1236 883 1.40
PG4 1.74 8.42 0.00423 −0.01793 16.04 909 646 1.41
PG5 2.18 6.74 0.00428 −0.02205 16.63 702 476 1.48
PG6 2.90 4.91 0.00464 −0.02592 17.87 597 387 1.54
PG7 3.55 3.93 0.00511 −0.02753 14.64 418 250 1.67
PG8 4.52 3.33 0.00467 −0.04002 15.42 402 236 1.71

HW probe at M4

Flow K × 106 U∞ (ms−1) Cf �p δ (mm) Rδ∗ Rθ H

PG1 0.77 19.93 0.00402 −0.00857 13.71 1769 1318 1.34
PG2 0.95 16.30 0.00404 −0.01043 14.75 1524 1125 1.35
PG3 1.23 12.69 0.00405 −0.01346 15.53 1196 876 1.37
PG4 1.74 8.80 0.00434 −0.01723 15.84 868 613 1.42
PG5 2.18 6.93 0.00453 −0.02024 16.04 655 439 1.49
PG6 2.90 5.12 0.00474 −0.02513 16.34 553 352 1.57
PG7 3.55 4.23 0.00489 −0.02942 13.57 420 255 1.65
PG8 4.52 3.43 0.00486 −0.03774 14.70 380 223 1.71

Table 2. Various parameters associated with the mean velocity profiles at all the three HW
locations M1, M3 and M4.

the cases (i.e. fs > 2 × fkmax ). Further since large-scale structure is the focus of the
present study, capturing the low- and moderate-wavenumber parts of the spectrum
is more relevant in the present context. Table 1 thus confirms that the sampling rates
used in the present study are quite adequate.

3. Basic analysis of the experimental data
Mean velocity profiles in the present study were measured by the HW probe located

40 mm downstream of the SHW probe (HW probe locations M1, M3 and M4). For
plotting these profiles in inner coordinates (i.e. U+ versus y+), friction velocities Uτ

at the HW locations are required for all pressure gradients. As mentioned before in
the previous section, a complete mapping of Uτ with various spatial locations and
free-stream velocities in the sink flow region was available from the previous study of
Dixit & Ramesh (2008). This information was used to get values of Uτ at all the three
HW locations M1, M3 and M4 by interpolation, since the present HW locations lie
between the SHW locations. Table 2 gives the details of parameters associated with the
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Figure 2. Mean velocity profiles at HW station M4 in conventional coordinates for different
pressure gradients in the present study.

mean velocity profiles at all the three HW locations. In table 2, U∞ is the free-stream
velocity; δ is the boundary layer thickness based on 99.5 % of U∞; Cf = 2 (Uτ/U∞)2

is the skin friction coefficient; K = (ν/U 2
∞) dU∞/dx is the acceleration parameter; and

�p = (ν/ρU 3
τ ) dp/dx is the pressure gradient parameter. Further, Rθ is the Reynolds

number based on momentum thickness θ; Rδ∗ is the Reynolds number based on
displacement thickness δ∗; and H = δ∗/θ is the conventional shape factor.

The attainment of asymptotic sink flow state is characterized by the streamwise
constancy exhibited by parameters K , Cf , �p , H and all the Reynolds numbers (see
Jones et al. 2001; Dixit & Ramesh 2008). It was noted in Dixit & Ramesh (2008)
that in the present sink flow set-up, mean flow was very close to the asymptotic state
at and downstream of station L3. In the present context where measurements have
been done at L1, L3 and L4, this implies that the flow at L1 has not quite attained
the asymptotic state, while that at L3 and L4 is very close to the asymptotic state.
Values of parameters in table 2 reconfirm this observation.

Figure 2 shows mean velocity profiles at HW station M4 in conventional coordinates
(i.e. U/U∞ versus y/δ) for different pressure gradients. Also plotted is the laminar
sink flow solution which is an exact solution (see Schlichting & Gersten 2000).
The profiles corresponding to pressure gradients PG7 and PG8 appear to be reverse
transitional, since they are less full compared with other profiles and show progressive
shift towards the laminar solution. It is difficult to identify and quantify the precise
conditions that define onset of reverse transition, since it is supposed to be a gradual
process (see Narasimha & Sreenivasan 1973, 1979; Sreenivasan 1982). Therefore
certain arbitrariness is bound to exist while identifying certain turbulent boundary
layers in the present study as being reverse transitional.

Figure 3 shows the same mean velocity profiles of figure 2 in inner coordinates
(i.e. U+ versus y+). Clearly all profiles show significant departures from the universal
logarithmic law as is well known in the case of strong-FPG turbulent boundary layer



Large-scale structures in sink flow boundary layers 245

100 101 102 103 104
0

5

10

15

20

25

U+

y+

PG1
PG2
PG3
PG4
PG5
PG6
PG7
PG8

Universal log law, κ = 0.41 and C = 5.2
Linear profile U+ = y+

Figure 3. Mean velocity profiles at HW station M4 in inner coordinates for different
pressure gradients in the present study.
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flows (see Dixit & Ramesh 2008). It is seen that the viscous sublayer occupies
increasingly larger fractions of the total boundary layer thickness as the FPG
becomes severer. This is evident from the progressive shift of near-wall velocity
profiles (y+ < 20) towards the linear velocity profile U+ = y+. Figure 3 corroborates
the inference regarding the reverse-transitional nature of PG7 and PG8 profiles drawn
from figure 2 in the preceding paragraph.

Figure 4 shows typical power-density spectra for case PG1 at HW station M4 for
various wall-normal locations in the Kolmogorov scaling and the wall or inner scaling.
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Figure 5. Typical time traces of the streamwise fluctuating velocity at y/δ of approximately
0.23 for pressure gradients PG1, PG3, PG6 and PG8. HW station is M4. Local mean velocity
U and boundary layer thickness δ are used for non-dimensionalization.

Here the wavenumber power spectral density φ11 (k1) is defined from the relation

u2 =

∫ ∞

0

φ11 (k1) dk1, (3.1)

where u2 is the mean-squared streamwise velocity fluctuation and k1 is the streamwise
wavenumber. Conversion from frequency f to wavenumber k1 is done using Taylor’s
hypothesis with convection velocity taken to be equal to the local mean velocity U , i.e.
k1 = 2πf/U . The Kolmogorov length, time and velocity scales, denoted respectively
by ηk , tk and vk , are defined in the usual fashion (see Tennekes & Lumley 1972).
It may be noted in figure 4(a) that the high-wavenumber ends of all the spectra at
different heights across the boundary layer collapse well in the Kolmogorov scaling
as expected (see Saddoughi & Veeravalli 1994). Also it may be seen from figure 4(b)
that the spectra in the inner scaling collapse fairly well beyond k1y = 1 approximately,
except for the lowest y/δ spectrum. This indicates that the wall scaling for spectra
prevails, beyond the wavenumbers given by the inverse of the wall-normal distance,
almost all through the boundary layer as may be expected in the case of sink flows
(i.e. pure wall-flows according to Coles 1957). The Reynolds number is perhaps too
low to observe a substantial region of universal equilibrium scaling, i.e. the k

−5/3
1 law.

There appears to be a small region of k−1
1 law, especially for the near-wall spectra.

However this region is also too small to make any conclusive statement.
Figure 5 shows typical time traces of the normalized fluctuating velocity, i.e.

u(y, t)/U (y), for pressure gradients PG1, PG3, PG6 and PG8 at HW location M4.
All the traces correspond to the same wall-normal location having y/δ of about
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Figure 6. Comparison of time traces of the streamwise fluctuating velocity at HW stations
M1 and M4 and at the same y/δ (about 0.23) for pressure gradient PG8. Local mean velocity
U and boundary layer thickness δ are used for non-dimensionalization.

0.23. Time axis has been non-dimensionalized by the local mean velocity U and the
boundary layer thickness δ. Time traces for PG1 and PG3 show considerable high-
frequency activity, whereas those for PG6 and PG8 clearly show progressive reduction
in the high-frequency content. Furthermore the signals become progressively spiky
and negatively skewed (large excursions on the negative side of u/U axis) as the FPG
is increased. These observations support the contention of figures 2 and 3 that flows
PG7 and PG8 are reverse transitional.

Figure 6 shows a comparison of time traces of the streamwise velocity fluctuation
obtained at same y/δ (about 0.23) at HW stations M1 and M4 for flow PG8. It is
apparent that the signal at M1 is richer in terms of its frequency content as compared
with the signal at the downstream station M4. This is indicative of the fact that the
flow which is initially turbulent is approaching a reverse-transitional state, and thus
this observation also supports the contention regarding the reverse-transitional nature
of PG8.

Figure 7 shows comparison of the mean velocity profiles in the present study
obtained by HW anemometry with the Pitot-tube measurements of an earlier study
by Dixit & Ramesh (2008) for the same pressure gradient PG2 (PE2 in Dixit &
Ramesh 2008) in the same experimental sink flow set-up. The excellent agreement,
seen in figure 7, serves as a check on the quality and consistency of the present
measurements.

Figure 8 shows the reverse-transitional mean velocity profiles at streamwise stations
M3 and M4 for pressure gradient PG8 in the conventional (i.e. laminar-like) and inner
scalings respectively. The excellent collapse seen in figure 8 is somewhat surprising
and in fact quite interesting, since reverse-transitional profiles are expected to be in a
non-equilibrium evolving state and are not expected to conform to the laminar-like
or inner law scalings. This interesting result, however, needs to be slightly tempered
with caution, as the streamwise separation between locations M3 and M4 is only
about 4δ, where δ is the typical boundary layer thickness in the present study. Even
so, we believe that this result is likely to hold for larger streamwise separations also.
In view of this, the sink flow configuration presents a really attractive framework
for exploring reverse transition in greater detail. This possibility of using sink flow
to effectively study relaminarization appears to have been anticipated by Sreenivasan
(1981).
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4. Investigation of the large-scale structure
4.1. Typical cross-correlation coefficient Rτu(�x,y) curves

For obtaining the orientation or inclination of the large-scale structure experimentally,
the cross-correlation coefficient Rτu(�x,y) between the fluctuating wall-shear stress
τ (t) and the streamwise velocity fluctuation u (t) was measured. The probe
arrangement (figure 1b) has already been discussed in § 2. The HW probe was
located 40 mm downstream of the SHW probe and was traversed in the wall-normal
direction. The positive or negative time delay (�t) given to the HW signal was
converted to spatial distance upstream or downstream of the HW (�xp = −Uc�t) by
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Figure 9. Typical cross-correlation coefficient Rτu(�x,y) curves obtained using Taylor’s
hypothesis applied to the HW signal for pressure gradient PG6. The SHW is at L4 (�x = 0),
and the HW is at M4 (�x = 0.04 m). The circles mark the maximum of Rτu(�x,y) at a given
y-location, and the corresponding value of �x will be denoted by �xmax for that y-location.

making use of Taylor’s hypothesis. Convection velocity in Taylor’s hypothesis was
taken to be the same as the local mean velocity (i.e. Uc(y) = U (y)). The validity of
Taylor’s hypothesis and the choice of convection velocities in the present study are
discussed later in greater detail in §§ 6 and 7 respectively.

Figure 9 shows the typical cross-correlation coefficient Rτu(�x,y) curves obtained
using Taylor’s hypothesis applied to the HW signal for pressure gradient PG6. Note
that as one moves away from the wall, (i) the peak value of Rτu(�x,y) decreases
(i.e. the correlation becomes weak), and (ii) the peak moves away from the SHW
location in the downstream direction. The second observation indicates the presence
of a large-scale structure that is leaning forward in the direction of the flow.

4.2. Orientation of the large-scale structure in pressure gradients

Identification of the structure involves locating the maximum of Rτu(�x,y) spatially,
i.e. to find the distance �x = �xmax (see figures 1b and 9) downstream of the SHW
where Rτu(�x,y) reaches its maximum for a given y-location. In the present study,
for a given y-location, the maximum of Rτu(�x,y) was first located upstream or
downstream of the HW probe (i.e. �xpmax was obtained) by applying Taylor’s
hypothesis to the HW signal. This distance �xpmax was then converted to distance
�xmax downstream of the SHW probe using the relation �xmax = �x0 + �xpmax (see
figure 1b). Note that �xpmax < 0 if the peak in Rτu(�x,y) occurs upstream of the HW
and �xpmax > 0 if it occurs downstream. This exercise was carried out over the entire
thickness of the boundary layer for all pressure gradients. The plot of distance y from
the wall versus distance �xmax corresponding to the maximum of Rτu(�x,y) was
then constructed (see figure 10). The local structure inclination angle α(y) is defined
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Figure 10. Variation of the average structure inclination angle αavg with pressure gradient.
The SHW is at L4, and the HW is at M4. Slope of each best-fit line gives αavg from (4.2).

as the inverse tangent of the local slope of y versus �xmax plot, i.e.

α(y) = tan−1

(
dy

d�xmax

∣∣∣∣
y

)
. (4.1)

It was found that within the experimental scatter, y is a linear function of �xmax

to a good approximation, for a range of y values for all pressure gradients. This
observation enabled the definition of average structure inclination αavg as the inverse
tangent of the slope of the best-fit line (least squares method) over that range of y

values:

αavg = tan−1

(
dy

d�xmax

∣∣∣∣
best-fit

)
. (4.2)

Figure 10 shows the y versus �xmax plot at SHW location L4 (and therefore the
HW is at M4) for all the pressure gradients under consideration. The best-fit lines
(least squares method) are also shown. Here onwards in the current paper, the phrase
‘structure angle’ would mean ‘average structure inclination angle αavg ’. It is already
noted (see figure 9) that the maximum value of Rτu(�x,y) decreases away from the
wall. It was also observed that the smallest well-defined value of the peak in Rτu(�x,y)
that could be located unambiguously was about 0.1. Therefore points in figure 10 do
not extend beyond y = 9 mm approximately, since beyond this wall-normal location,
the peak in Rτu(�x,y) was not well defined and unambiguous.

The most important observation that is evident from figure 10 is that there is
a systematic trend in the structure angle as the pressure gradient is varied; αavg

decreases systematically and the structure becomes flatter as one goes on increasing
the strength of the FPG.

At this stage, it is important to emphasize the following connection which concerns
the primary motivation of the present study as mentioned in § 1. It has been shown
here, perhaps for the first time in the literature on accelerating turbulent boundary
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layers in general and sink flows in particular, that there exists a systematic trend
of orientation of the large-scale structure with strength of the pressure gradient
as seen in figure 10. In an earlier study of the mean velocity scaling by Dixit &
Ramesh (2008) in the same sink flow set-up, it was observed that the logarithmic law
exhibited by a sink flow turbulent boundary layer undergoes systematic variations
with the pressure gradient (the non-universal, pressure-gradient-dependent log laws).
It therefore appears that it would not be inappropriate to educe the structural
behaviour that is consistent with the observed mean velocity scaling.

Another important aspect that deserves discussion is the possible Reynolds number
dependence of the structure inclination. The present experiments have Rτ = δUτ/ν =
δ+ values ranging from about 816 for PG1 to about 166 for PG8 at station M4.
This was somewhat unavoidable, since pressure gradient in the present study was
varied by changing the free-stream speed, which resulted in change of the Reynolds
number of the sink flow. Therefore in the present results there could very well have
been a combined effect of both the pressure gradient and the Reynolds number. In
order to rule out the possibility of any substantial Reynolds number dependence, it
is instructive to take a closer look at the available ZPG results at different Reynolds
numbers.

Adrian et al. (2000) have covered the range of Reynolds numbers Rτ = 355–
2000 for ZPG turbulent boundary layers. Though their results pertain to the
instantaneous packet inclinations, they have not reported any discernible Reynolds
number dependence of the structure inclination (say at a fixed value of y+). Linear
stochastic estimations of Christensen & Adrian (2001) for turbulent channel flows
have shown that the averaged packet inclinations (of about 12◦) are almost the same
for the two different Reynolds numbers, Rτ = 547 and 1734, studied. In a recent
DNS study, Lee & Sung (2009) have also reported very similar instantaneous and
average packet inclinations in a ZPG layer (Rτ of about 600–700) as Adrian et al.
(2000) and Christensen & Adrian (2001). Marusic & Heuer (2007) have shown that
the structure inclination (of about 13◦–15◦), measured by cross-correlation studies
in ZPG turbulent boundary layer flows, is remarkably invariant over almost three
decades of the Reynolds number Rτ ranging from 103 to 106 (i.e. moderate to
large). There appear to be no other systematic studies in the case of ZPG turbulent
boundary layers that investigate or compare structure inclinations over a range of
Reynolds numbers from low to moderate and high values. Further it is conceivable
that the dominant Reynolds number effect in a low-Reynolds-number ZPG flow is
that the vortices would not be as compact (i.e. more diffused) as in a high-Reynolds-
number flow. It is however difficult to see how such an effect would alter the packet
inclinations significantly. Therefore in view of the available results from Adrian et al.
(2000), Christensen & Adrian (2001), Lee & Sung (2009) and Marusic & Heuer (2007)
it appears reasonable to expect that the Reynolds number effects in the present study
would be negligible in comparison with the pressure gradient effects. In addition,
as mentioned in Dixit & Ramesh (2008), use of �p as the reference for comparing
structure inclinations in the present study (see § 4.3) may be viewed as a means to
account for the Reynolds number indirectly through Cf which is present in the
definition of �p .

4.3. Streamwise variation of the structure angle

Since experiments were performed in the present study at three streamwise stations
(the SHW at L1, L3 and L4 and the corresponding HW at M1, M3 and M4
respectively), it is natural to compare the structure angle results for these stations.
In particular it is of interest to see whether the structure angle also reaches its
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asymptotic value in the sink flow configuration as do the other flow parameters such
as the Reynolds numbers and skin friction coefficient (see Dixit & Ramesh 2008).

In the first place, it is necessary to decide on an appropriate measure of the
streamwise pressure gradient. The acceleration parameter K = (ν/U 2

∞) dU∞/dx

depends purely on the free-stream velocity U∞ (for a given fluid) and reaches a
constant value just before station L1 (see Dixit & Ramesh 2008 and figure 1a of
the current paper). Thus as far as K is concerned, stations L1, L3 and L4 all
belong to the K = constant region. However it is noted in Dixit & Ramesh (2008)
that the boundary layer (mean flow) parameters such as the Reynolds numbers and
skin friction coefficient Cf reach close to their asymptotic values just before station
L3. Therefore the pressure gradient parameter �p = −K/(Cf /2)3/2 attains a nearly
constant value just before station L3. Thus it appears appropriate to use K as the
measure of pressure gradient when structure angles at all the three stations are being
compared. On the other hand, �p is more relevant when results at and downstream
of L3 are being compared.

Figure 11(a) shows the variation of structure angle αavg with the acceleration
parameter K for all the three streamwise measurement stations. Within the
experimental uncertainty, there is remarkable agreement between the values of αavg

at stations L3 and L4 for all pressure gradients. It has been noted previously that
the mean flow at and downstream of station L3 is in a state that is very close to
the asymptotic sink flow state. Therefore it appears that the structure inclination
indeed approaches its asymptotic value in the asymptotic sink flow configuration. The
values of αavg at L1 are consistently higher for all pressure gradients, indicative of the
adjustment that is needed before the flow comes close to the asymptotic state at L3.
Figure 11(b) shows the structure angle variation with the pressure gradient parameter
�p for stations L3 and L4. Also note that the extrapolation of the trend of structure
angle variation in figure 11 to the ZPG case (i.e. K =0 or Δp = 0) yields αavg = 14◦

approximately, which is consistent with the ZPG data in the literature (see § 1).
It may be noted in figure 11 that initially when the FPG is weak, structure angle

decreases rapidly with the increase in the FPG. As the FPG is progressively made
severe, the rate of decrease of structure angle reduces till a critical value corresponding
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Figure 12. Streamwise constancy of the structure angle in a sink flow boundary layer. The
thick solid line at A represents infinitesimal length of the structure around A. Coordinates of
A are shown in the inner scaling.

roughly to pressure gradient PG6 is reached. After this, again the structure angle
reduces rather rapidly. Thus there appears to be a distinct change in the trend of
structure angle as one goes from turbulent to reverse-transitional flow. It is interesting
to note that the value of K around which this change of trend is seen to occur is
very close to the well-known limiting value of K =3 × 10−6 that is often quoted in
the literature in the context of the onset of relaminarization (see Sreenivasan 1982).

If we take the typical boundary layer thickness δ to be about 15 mm (see table 2),
then the streamwise separation between stations L3 and L4 is about 4δ. Even though
this distance over which the constancy of structure angle has been observed is not as
large as one would want to be able to make any conclusive statements, the possibility
of structure angle reaching its asymptotic value in the sink flow configuration appears
quite plausible. In view of the short separation between L3 and L4, the last sink flow
station L5 (see Dixit & Ramesh 2008) could have been used for the present study,
especially to demonstrate the streamwise invariance of structure angle. However the
sink flow region ends just after station L5, as seen in Dixit & Ramesh (2008), so that
the SHW at L5 and the HW 40 mm downstream of it would detect the structure that
is partly inside and mostly outside the sink flow region. This possibility was therefore
not pursued.

The expectation regarding the structure inclination angle reaching its asymptotic
value in a sink flow may be appreciated by appealing to the following heuristic
argument. Figure 12 shows the large-scale structure in a sink flow boundary layer. It
will be shown later in § 7 that the local convection velocity Uc(x, y) of the structure
in the present study is fairly close to the local mean velocity U (x, y). Thus figure 12
shows point A belonging to the structure with coordinates (x, y) where the convection
velocity of point A is Uc =U (x, y). It may be easily shown from the geometry of sink
flow (see also Dixit & Ramesh 2008) that each radial mean streamline represents a line
of constant η = y/δ, with the obvious limiting cases being η =0 at the wall and η =1
at the boundary layer mean edge. Furthermore since the flow is steady in the mean,
the mean pathlines are the same as the mean streamlines. This implies that as the flow
proceeds downstream, point A moves (in the mean) to a different x but remains at the
same η. Further since the Reynolds number Rτ = δUτ/ν = δ+ is constant for a given
sink flow, it is clear that on each mean streamline, y+ = yUτ/ν =(y/δ)(δUτ/ν) is also
a constant. Thus we have a situation in which point A, along with the infinitesimal
length of structure around it, moves in x with y+ (or η) held fixed. Thus if we show
that the slope dy/dx of this infinitesimal length is independent of x, at a given value
of y+ (or η), then it would amount to the statement that the local structure inclination
angle does not change in the streamwise direction.
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Assuming that the velocity field U (x, y) is continuous, slope dy/dx of the
infinitesimal length of structure around point A may be written, at a fixed value
of y+, as

dy

dx

∣∣∣∣
y+

∼ ∂U/∂x

∂U/∂y

∣∣∣∣
y+

. (4.3)

A similar expression for the orientation of vortex elements has been used by Head
(1976) for an APG equilibrium turbulent boundary layer flow. Since the mean velocity
profiles at different streamwise stations for a sink flow collapse in all scalings (see
Dixit & Ramesh 2008), we can write the mean velocity in the inner scaling as
U+ = f (y+), where U+ = U/Uτ is independent of x and is a function of y+ alone.
Interestingly, in view of figure 8 and table 2, all the considerations in the following
that apply to the turbulent sink flow cases (PG1–PG6) apply equally well to the
reverse-transitional cases (PG7 and PG8). Substituting the inner scaling U+ = f (y+)
into (4.3) with simple rearrangements yields

dy

dx

∣∣∣∣
y+

∼
(

−�p

Cf

2

) [
d (y+f ) /dy+

df/dy+

]
y+

. (4.4)

As already mentioned, the pressure gradient parameter �p and the skin friction
coefficient Cf are constant for a given sink flow; while obtaining (4.4), the constancy
condition for Cf has been used. Therefore (4.4) implies that the slope dy/dx of the
structure at a fixed value of y+ is independent of the streamwise coordinate x, since
all the other quantities on the right-hand side of (4.4) are functions of y+ alone.
This demonstrates that the local structure inclination angle (given by the inverse
tangent of the slope dy/dx) for a fixed value of y+ (or η) remains invariant in the
streamwise direction. Since (4.4) is derived for an arbitrary value of y+, the result is
valid for all values of y+. This implies that all local inclination angles of the structure
are preserved as the structure travels downstream. Thus it is clear that the average
inclination angle of the structure would also be preserved. This heuristically explains
the expectation regarding the inclination angle of the large-scale structure reaching
its asymptotic value in the sink flow.

4.4. Spatial extent of the large-scale structure

It is instructive to examine the effect of pressure gradient on spatial extent of the
structure in both the streamwise and wall-normal directions. In order to study this
aspect, we consider in this section (i) the contours of the cross-correlation coefficient
Rτu(�x,y) and (ii) the estimates of the integral length scale Luu .

Figures 13 and 14 show the contours of Rτu(�x,y) for all the eight pressure
gradients with the SHW at station L4. These have been obtained by projecting the HW
signal upstream as well as downstream of the HW by using positive and negative time
delays respectively on the HW signal. Boundary layer thickness at M4 (i.e. where the
HW probe is located) is used for non-dimensionalization of the axes. There are many
interesting features of these contour plots that deserve special mention.

First, one may observe that for a fixed value of �x/δ, larger values of Rτu(�x,y)
occur close to the wall, and they generally decrease in the wall-normal direction
as one moves away from the wall. It is also clear that as the magnitude of the
FPG increases, regions of highly correlated activity get progressively concentrated
close to the wall and also extend downstream. This implies that the structure gets
flatter and longer because of increase in the strength of the FPG. Observation
of the contours of Rτu(�x,y) = 0.2 (say) clearly reveals this marked increase in the
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Figure 13. Contours of Rτu(�x,y) for pressure gradients PG1 to PG4. The SHW is at L4 (at
the origin of each plot). Boundary layer thickness δ at M4 is used for non-dimensionalization.

streamwise extent of the structure. It is apparent that the contours, of Rτu(�x,y) = 0.1,
are somewhat jagged, but this should not be taken to be inadequate convergence of the
correlation. This appears to be simply due to weakened correlation between the wall-
shear stress and the streamwise velocity fluctuation which involves relatively larger
uncertainties even though sufficient boundary layer turnover times are accounted for
in the averaging process.

Next, it may be noted that wall-normal extent of the structure that can be identified
without ambiguity remains almost the same with variations in the pressure gradient.
This may become clear if one observes that the upper portion of the Rτu(�x,y) = 0.1
contour always resides at y/δ ≈ 0.5 from the wall.

Another interesting observation is concerned with the magnitude and location of
the maximum value of Rτu(�x,y). Since Rτu(�x,y) is defined between the wall-
shear stress fluctuation and the streamwise velocity fluctuation, one would expect the
maximum value of Rτu(�x,y) to occur at the SHW location, i.e. at the origin of each
plot. In other words, the ‘eye’ of the contour plot should be centred on the SHW
location. This expectation comes from what happens in two-point correlations of
the streamwise velocity fluctuation measured by two spatially separated HW probes
(see for example Krogstad & Sk̊are 1995). However figures 13 and 14 indicate that
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Figure 14. Contours of Rτu(�x,y) for pressure gradients PG5 to PG8. The SHW is at L4 (at
the origin of each plot). Boundary layer thickness δ at M4 is used for non-dimensionalization.

this does not happen in the present cases. The eye of the contour plot is seen to be
located away from the SHW location (above and downstream of it). Furthermore
there appears to be a systematic movement of this eye (towards the wall and further
downstream) as the FPG is made progressively severe. In addition there is a clear
increase, with the FPG, in the maximum value of Rτu(�x,y) that occurs at the centre
of the eye.

It should be emphasized that this behaviour has been noted previously in the
literature by Wark & Nagib (1991) who have employed an array of shear stress
sensors and a cross-wire probe for structural and other investigations of a ZPG
turbulent boundary layer flow. They have not plotted the contours of Rτu(�x,y) as
has been done here, and therefore the above-mentioned behaviour goes somewhat
unnoticed in their paper. Figure 3(a) from Wark & Nagib (1991) shows the temporal
counterpart of Rτu(�x,y) (i.e. without making use of Taylor’s hypothesis) plotted
against the time shift given to the u (t) signal. The cross-wire probe is located directly
above the shear stress sensor for this plot. It is seen that as one moves away from the
wall, the peak in the correlation occurs at progressively negative time shifts, which
is as expected for a structure that is leaning forward in the direction of the flow.
However it is clearly seen that the magnitude of peak correlation first increases and
then decreases as one moves away from the wall. This implies that the contour plot
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in that case would also show the peak correlation occurring above and downstream
of the shear stress sensor as in the present cases.

It is clear that ‘at the wall’, since the streamwise velocity fluctuation is zero its
correlation with the wall-shear stress fluctuation has to be zero, as they are not in
phase with each other. It is hence conceivable that non-zero values of this correlation
should occur away from the wall. While this explains peaking of the correlation
away from the wall, it still does not explain why it peaks downstream of the SHW.
The use of Taylor’s hypothesis does not appear to be the reason for this intriguing
behaviour, since exactly the same observation has been made by Wark & Nagib (1991)
without using Taylor’s hypothesis. Perhaps the key lies in the fact that the correlation
under consideration is between wall-shear stress fluctuation and streamwise velocity
fluctuation and not between the two streamwise velocity fluctuations recorded by
different HW probes.

In the context of increase in the streamwise extent of structure with the FPG
(figures 13 and 14), it is instructive to appeal to the experimental results by
Krogstad & Sk̊are (1995) for an APG near-equilibrium turbulent boundary layer
close to separation. They have noted that the streamwise spatial extent of the large-
scale structure in the case of APG flow is smaller than that in the case of a ZPG flow
as may be seen from figures 5(a, b) and 7(a) in their paper. This trend in APG flow
is exactly opposite to the one observed here for the FPG flow. This implies that the
presently observed trend of increase in streamwise spatial extent of the structure with
increase in the FPG is consistent with the results of Krogstad & Sk̊are (1995) if the
sign of pressure gradient is taken into account.

As to the estimates of the integral length scale, the autocorrelation coefficient for
stationary streamwise velocity fluctuation u (t) is given by

Ruu(x, y, �t) =
u(x, y, t)u(x, y, t + �t)

u2
, (4.5)

where �t is the time delay given to the u (t) signal. Using Taylor’s hypothesis, the
time delay may be converted to spatial distance. Note that Ruu(x, y, �t = 0) = 1. Now
the integral time scale Tuu is defined in the standard fashion (see Tennekes & Lumley
1972) as

Tuu =

∫ ∞

0

Ruu (x, y, �t) d (�t) , (4.6)

where the integration, in practice, is usually carried out from zero to that value of �t

at which Ruu (�t) first crosses the line Ruu (�t) = 0 (here onwards the dependence on x

and y will be dropped for convenience with the understanding that all these quantities
are local). Note that Tuu may be interpreted as the area under the Ruu (�t) curve
being concentrated in a rectangle of width Tuu and unit height (i.e. the maximum
value for Ruu (�t)). The integral time scale Tuu is related to the integral length scale
Luu through Taylor’s hypothesis as

Luu = −UcTuu, (4.7)

where Uc = Uc(x, y) is the convection velocity taken to be the same as the local mean
velocity, i.e. Uc = U (x, y). Note that because of the use of (4.7) Luu has a negative
sign, and its magnitude is indicative of the typical spatial extent over which u (t) is
correlated with itself.

Figure 15 shows wall-normal distribution of non-dimensional magnitude of the
integral length scale (Luu/δ) plotted for all pressure gradients with the HW probe
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Figure 15. Wall-normal distribution of the magnitude of the integral length scale Luu based
on the autocorrelation coefficient Ruu (�t) for all pressure gradients. The HW is at M4.

at station M4. It is evident from figure 15 that the integral scale, especially in the
near-wall and intermediate regions, shows marked increase as the pressure gradient
is made more favourable. This reconfirms that the spatial extent of the correlated
activity indeed increases with the FPG.

Thus from the discussion on the structure inclination in § 4.3 and the present
discussion on the contour plots and the integral length scale, we may now conclude
that the structure becomes flatter (the structure angle decreases) and longer (the
streamwise spatial extent increases) as the pressure gradient is increased to make it
more favourable.

4.5. Plausible structural models for sink flow turbulent boundary layers

Hairpin vortices are perhaps the most widely accepted and dominantly occurring
structural elements that populate the entire turbulent boundary layer as discussed
already in § 1. The shapes of individual hairpins and the inclinations of hairpin
packets (formed because of structural self-organization) are possibly two independent
issues (see Adrian et al. 2000), and in this subsection we try to connect the present
experimental results from §§ 4.1–4.4 to these ideas. This connection, by its very
nature, is rather speculative, since the present study based on the HW anemometry
measurements of two-point correlations is indeed incapable of going as far as for
example a PIV or a DNS study in deducing and confirming the above-mentioned
structural aspects in detail. Nevertheless attempts to make such connections may
take us quite far in terms of shedding useful light on some conceptually important
issues such as the mechanism of relaminarization or reverse transition by a strong
FPG, as we shall see shortly in the next section. In this subsection, we first propose
a plausible shape of the individual hairpin for a sink flow turbulent boundary layer
without considering any structural self-organization. This will then be followed by a
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Figure 16. (a) Typical ZPG eddy (a slanted �-eddy) proposed by Marusic (2001) and (b) the
present proposal of a typical sink flow turbulent boundary layer eddy (a shallow �-eddy). The
eddy nomenclature (head, neck and leg) is as given in Robinson (1991).

discussion regarding the hairpin packet inclinations (i.e. with the possible structural
self-organization taken into account) in the light of the present experimental results.

The prevalent model for a typical eddy in a ZPG turbulent boundary layer flow is
the attached eddy inclined to the wall at about 45◦, leaning forward in the downstream
direction (see Perry & Chong 1982; Perry et al. 1986). As mentioned in § 1, Marusic
(2001) has shown that a more appropriate form of the ZPG eddy would be a slanted
�-eddy (see figure 16a), since the calculations based on it agree better with the
experimental data. Further, there appears to be a close correspondence between (i)
the shallow-angled (18◦) leg of the eddy and the inner region of the mean velocity
profile and (ii) the 45◦ neck of the eddy and the outer part of the mean velocity profile.
In other words, two-tiered structure of the slanted �-eddy appears to be consistent
with the corresponding two-layered structure of the ZPG turbulent boundary layer.

Now in the case of a sink flow turbulent boundary layer, it is well known that
there is complete overlap of the inner and outer layers (Coles 1957; Jones et al. 2001;
Dixit & Ramesh 2008), and the log law extends almost up to the edge of the boundary
layer, i.e. a pure wall-flow. Therefore, based on an analogy to the ZPG scenario, we
may speculate that the typical eddy in a sink flow turbulent boundary layer might
just be a shallow �-eddy (see figure 16b) made up only of the shallow-angled leg part
extending all the way from the wall with the head located near the boundary layer
edge (similar to the type A eddy of Perry et al. 2002). In absence of any structural
self-organization, the structure inclination angle as measured in the present study
must correspond to the angle of this leg and would thus be a function of the pressure
gradient (see §§ 4.2 and 4.3) as seen in figure 16(b). While the proposed shallow
�-eddy is similar to the type A eddy structure proposed by Perry et al. (2002), the
difference between them appears to be that while the latter yields a pure wall-flow
with the universal log law in the inner region (as in ZPG flows) the former is expected
to yield a family of pure wall-flows with the non-universal log laws depending on the
strength of the pressure gradient.
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Figure 17. Possible spatially coherent hairpin packets in sink flow boundary layers and their
pressure-gradient-dependent inclinations. (a) Packet of slanted �-eddies similar to those in
ZPG turbulent boundary layer flows and (b) packet of shallow �-eddies as per the present
proposal in figure 16(b).

Next we consider structural self-organization. Following the ZPG case, we would
like to explore the possibility that the structure inclinations measured in the present
study using two-point correlations correspond to the ‘packet inclinations’ (see Adrian
et al. 2000; Christensen & Adrian 2001; Lee & Sung, 2009) rather than the inclinations
of individual hairpins. In that case, whatever may be the shape of the individual
hairpins, the inclination of the ramp-like line connecting the heads of hairpins
in a packet must be a function of the pressure gradient. This situation is shown
schematically in figure 17(a, b).

Whether such structural self-organization may be expected in sink flow situations
is unclear at present. In view of relatively low Reynolds numbers in the present study,
it may be appropriate to relate the ‘backs’ of outer layer bulges to the outlines of
the hairpin packets in a fashion similar to the low-Reynolds-number ZPG turbulent
boundary layer flows (see Adrian et al. 2000). However the fact that the mean
entrainment is zero in sink flow boundary layers (i.e. all the Reynolds numbers are
streamwise constant for a given sink flow) may well be related to the altered structure
of the outer layer bulges in comparison with the ZPG case. More importantly, if
one views the streamwise coherence associated with a hairpin packet as a means of
bringing in the ‘non-local’ influences, then the hairpin packet scenario goes against
the ‘perfect equilibrium’ (perfectly ‘local’ scaling) character exhibited by sink flow
boundary layers. On the other hand, the contours of Rτu(�x,y) (figures 13 and 14)
and the estimates of the integral length scale (figure 15) indicate the present of strong
streamwise coherence that may perhaps be taken as a support for the hairpin packet
paradigm. Such a strong streamwise coherence may, however, be simply due to the
increased streamwise dilatation of the individual hairpin eddies due to the FPG (that
is not a factor in the ZPG case). As mentioned before in § 1, the recent DNS study of
equilibrium APG turbulent boundary layers by Lee & Sung (2009) shows apparent
increase in the streamwise separation between the hairpin heads in a packet for APG
flow as compared with the ZPG flow. Extending this to the strong-FPG case, one
may expect more closely spaced hairpins (than the ZPG) in a packet (if the packet
itself exists) or even merging of these closely spaced hairpins into a single strong
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hairpin. This would be indicative of the nature of the flow becoming more ‘local’.
DNSs and careful PIV measurements with sink flow boundary layers at different
pressure gradients and Reynolds numbers would certainly shed important light on
these presently speculative issues of structures and their organization.

5. Structural model of relaminarization of turbulent boundary layers in strong
FPGs

The phenomenon of relaminarization or reverse transition of turbulent boundary
layers when subjected to strong streamwise FPGs may be explained in the light
of large-scale structural aspects and their behaviour in strong FPGs. When an
initially turbulent boundary layer is subjected to a sufficiently strong streamwise
FPG, the mean flow development is chiefly governed by pressure and viscous forces
with turbulent transport of streamwise mean momentum becoming comparatively
negligible. Thus as far as the mean flow is concerned, such a flow is like a
pressure-gradient-driven laminar boundary layer flow. This phenomenon is called
relaminarization or reverse transition by a strong FPG. If the FPG is strong but not
enough to fully relaminarize the flow, then the state of the flow may be somewhere
in between the fully turbulent and fully relaminarized state. This may be called the
reverse-transitional turbulent boundary layer flow. Flows PG7 and PG8 in the present
study appear to be reverse-transitional flows, since the mean velocity profiles in these
flows are less full compared with the fully turbulent cases (PG1 for example) and
more full compared with the laminar sink flow solution (see figure 2). In view of
the experimental results obtained so far in the present study, the model proposed
by Narasimha & Sreenivasan (1973) for the quasi-laminar limit of reverse transition
(in this connection, see also Narasimha & Sreenivasan 1979; Sreenivasan 1982) and
the plausible structural models discussed in § 4.5, we may now attempt to develop
a structural explanation of the process of reverse transition in sink flow turbulent
boundary layers. First, we shall briefly discuss the essence of the quasi-laminar limit
of the reverse-transition process by a strong FPG as proposed by Narasimha &
Sreenivasan (1973). Next, we shall show how the structural models discussed in § 4.5
may be used to explain the reverse-transition process in sink flow turbulent boundary
layers.

Narasimha & Sreenivasan (1973) have shown that in the final stages of reverse
transition by a strong FPG, the boundary layer flow field may be divided into
two parts: (i) the outer part of the boundary layer that behaves as a rotational,
inviscid flow describable by the Euler equation and (ii) the inner viscous part of
the boundary layer that is governed in the mean essentially by the laminar flow
equations (i.e. without any modelling for turbulence). They have argued that the
turbulent stresses themselves ‘do not’ vanish; i.e. the turbulence is ‘not’ killed off
completely; the turbulent stresses are nearly frozen in magnitude as the boundary
layer passes through various stages of relaminarization. It is the turbulent transport
∂ (−uv) /∂y of the mean streamwise momentum that is rendered negligible by the
dominating pressure forces. This is the so-called quasi-laminar limit. Note that since
turbulence is not destroyed in such cases, this type of relaminarization is referred to as
‘soft’ relaminarization (Narasimha 1983). We can reconcile this picture with the eddy
structural viewpoint (i.e. both individual hairpins and hairpin packets) as discussed
below.

First of all, it is important to note that the turbulent transport term in the mean
streamwise momentum equation may be written (see Tennekes & Lumley 1972), in
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Figure 18. Schematic of typical eddies in (a) a sink flow turbulent boundary layer and
(b) a sink flow reverse-transitional boundary layer.

the present notation, as

∂ (−uv)

∂y
= vωz − wωy, (5.1)

where ωy and ωz are the vorticity fluctuations in the wall-normal and spanwise
directions respectively and u, v and w are the velocity fluctuations in the streamwise,
wall-normal and spanwise directions respectively. It must be noted that the
prerequisite condition for validity of (5.1) is ∂u2/∂x 	 ∂(−uv)/∂y which is indeed
fulfilled by the boundary layers in the present study (see Dixit & Ramesh 2008).

From the viewpoint of individual hairpins without any self-organization and the
proposed pressure gradient dependence of their inclination (see § 4.5 and figure 16), we
may explain the sink flow reverse-transition process as follows. If we treat the structure
in a sink flow turbulent boundary layer as a vortex of the shape similar to that shown
in figure 16(b), we observe that the vorticity from the leg is largely orientated in
the streamwise direction (i.e. ωx 
 ωy) as a consequence of the shallow inclination of
the leg (quasi-streamwise vortices according to Robinson 1991). Therefore we have
a case in which the leg contributes little to the gradient ∂ (−uv) /∂y of Reynolds
shear stress; i.e. the second term in (5.1) is negligible. This implies that the major
contribution towards ∂ (−uv) /∂y comes from the ‘head’ of the eddy where the
dominant component of fluctuating vorticity is ωz. This suggests that the turbulent
transport due to ∂ (−uv) /∂y is likely to be large in the outer part of the sink flow
turbulent boundary layer, since the head of the eddy resides close to the mean edge
of the turbulent boundary layer (see figure 18a).

If the FPG is now made sufficiently large for the onset of relaminarization, we
may conceive of a situation in which the eddy inclination has reduced because of
the increase in the FPG (consistent with figure 10) and the head of the eddy has
moved away from the mean edge inside the boundary layer. This situation is shown
schematically in figure 18(b). In view of (5.1) and the discussion in the previous
paragraph, the movement of eddy head away from the mean edge towards inner
region of the boundary layer would cause turbulent transport to become negligible
in the outer part of the layer close to the mean edge. Furthermore, because of the
weak gradient of mean velocity in the region close to the mean edge, the viscous
transport there can also be expected to be negligible. Consequently, the outer region
starts behaving like an inviscid layer which is nonetheless rotational because of all
the vorticity that has been acquired upstream. This region is hence describable by the
Euler equation (see figure 18b) as in the model of Narasimha & Sreenivasan (1973).

It is known (see Rotta 1962) that the wall-normal velocity fluctuation v decreases
at a faster rate, compared with the other two components u and w, as the wall is
approached (the so-called blocking effect of the wall). Thus the contribution towards
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∂ (−uv) /∂y coming from the head of the eddy in the inner region is also expected
to reduce, not so much because of the reduction in ωz but apparently because of
the reduction in magnitude of v (see 5.1). This implies that turbulent transport in
the inner region may also be expected to be small especially in comparison with the
viscous transport which is expected to be large because of large gradients of the mean
velocity in the near-wall region. Thus in the limiting case in which the FPG becomes
so large that the quasi-laminar limit is reached, we may expect the inner region
to be governed mainly by pressure and viscous forces with the turbulent transport
becoming comparatively negligible.

It has been mentioned in § 4.2 that the correlation between the fluctuating wall-
shear stress and the streamwise velocity fluctuation becomes weak at large wall-normal
distances. Now this might be due to (a) the presence of a structure with a region
of weak correlation that is difficult to detect or (b) the absence of any structure
altogether. By perusal of figures 13(a) and 14(d ), we associate the former possibility
with the turbulent case and speculate that the latter might be associated with the
reverse-transitional case. Table 2 shows that the boundary layer thicknesses in these
cases are not very different. This lends credence to the speculation that the loss of
correlation in PG8 case may indeed be genuinely associated with the propensity of
the outer region to become rotational and inviscid.

Next, from the viewpoint of hairpin packets and the proposed pressure gradient
dependence of their inclinations, i.e. the packet inclinations (see § 4.5 and figure 17),
we may explain the sink flow reverse-transition process in a much similar fashion as
for the individual hairpins. In the case of packets, inclination of the line connecting
the heads of hairpins in a packet is a function of the pressure gradient as discussed
in § 4.5. It is thus evident that when this inclination reduces with the increase in the
FPG, the ‘heads’ of hairpins in the packet would come close to the wall; i.e. the outer
region of the turbulent boundary layer would become increasingly free of the turbulent
transport effected by the heads. Therefore the explanations given in the preceding
paragraphs for the individual hairpins also apply to the hairpin packets.

Thus the phenomenon of relaminarization by a strong FPG may be explained in
terms of the experimentally observed behaviour of the large-scale organized structures.
It must be noted that the above-given explanations are fairly general and may apply
even to a non-sink flow situation in which the flow may not be in equilibrium. In that
case, the response of the structure to the FPG (which might be changing rapidly in
the streamwise direction) is of course not expected to be local. However the process
of relaminarization may still be related to the structure inclination in much the same
way as demonstrated here for the sink flow cases.

Notice that the very presence of large-scale structure implies presence of (−uv), but
it is the gradient ∂ (−uv) /∂y which reduces as the structure tilts more towards the
wall. This means that the turbulence does not die off completely, but the transport
of streamwise mean momentum, effected by it, becomes comparatively negligible in a
strong FPG, and this is the essence of the so-called soft relaminarization (Narasimha
1983) as discussed before in this section. In this way, a deeper appreciation of the
phenomenon of soft-relaminarization may be gained by invoking such structure-based
arguments.

6. Experimental validation of Taylor’s hypothesis for the present study
Taylor’s hypothesis has been used in the present study to obtain the cross-correlation

coefficient Rτu(�x,y) from the measured time-series data as explained previously in
§ 2. This section deals with the validity of Taylor’s hypothesis that has been established
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Figure 19. Probe arrangement used for validating Taylor’s hypothesis. The SHW is at L3.
Only 1 of the 11 y locations is shown for clarity. The dotted HW probes indicate physical
movement of the HW to the grid points. All dimensions are in millimetres. The figure is not
to scale.

experimentally for the present study by making use of local mean velocity as the
convection velocity. A brief account of the related literature will be given in the next
section.

Since the present study is concerned with boundary layers, turbulent and reverse
transitional in moderate and strong FPGs, it was considered important to validate
Taylor’s hypothesis experimentally without relying on the results that have so far
been obtained primarily in the ZPG situations (see § 7).

Figure 19 shows the experimental arrangement adopted for this exercise. The SHW
probe was at L3. Six streamwise locations T1–T6 were chosen as indicated in figure 19.
Eleven wall-normal locations in the range of 1–8 mm from the wall were selected.
The choice of wall-normal locations was guided by the typical extent of the linear
region of the large-scale structure as seen in figure 10. The HW probe was traversed
in the wall-normal direction at each streamwise station (T1–T6) through the same
11 wall-normal locations. Thus a grid of 66 measurement locations was formed (6
streamwise locations and 11 wall-normal locations at each streamwise location). The
HW probes shown using the dotted lines in figure 19 indicate that the HW probe,
originally located at M3, was moved physically and taken to each of the above-
mentioned grid points. It was ensured that the wall-normal locations selected for this
validation exercise were the same as those in the basic HW probe traverse at M3
carried out for the original structure angle measurements.

Signals from the SHW (at L3) and the HW (at all the grid points) were acquired
with appropriate sampling rates and durations (see table 1), without any initial time
delay, for four representative pressure gradients PG1, PG3, PG6 and PG8 covering
the entire range. These signals were directly correlated, with zero time delay (�t = 0),
to get the ‘direct’ measurement of cross-correlation coefficient Rτu(�x,y) at all the
grid points. Next, from the original HW data at M3 (and the corresponding SHW
data at L3) taken during the structure angle investigations, the time delay �t given
to the HW signal was appropriately adjusted so as to extract the ‘Taylor’s estimate’ of
the cross-correlation coefficient Rτu(�x,y) at all the grid points. If the direct values
of cross-correlation coefficient Rτu(�x,y) agree well with the corresponding Taylor’s
estimates (within the typical measurement uncertainty), then it may be concluded that
Taylor’s hypothesis is valid.

Note that this exercise used only positive time delays given to the HW signal; i.e.
HW signals were projected only upstream of the HW. This however is not of much
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Figure 20. The cross-correlation coefficient Rτu(�x,y) at six representative wall-normal
locations for pressure gradient PG1. The solid line indicates Taylor’s estimate, while the
circles indicate the direct measurement with zero time delay. The SHW is at L3 (�x =0), and
the HW is at M3 (�x = 0.04 m).

concern, since the peak value of Rτu(�x,y) was seen to occur mostly upstream of the
HW in all the flows studied (see figure 10). However for the contour plots of figures 13
and 14, both types of delays were used, and therefore those plots assume the validity
of Taylor’s hypothesis in the downstream direction as well. Even though this aspect
is not demonstrated here in the present exercise, it is not unreasonable to expect that
Taylor’s hypothesis would be equally valid both upstream and downstream of the
HW especially when the maximum projection distances in both the directions are of
the same order (40 mm upstream and 60 mm downstream).

Figure 20 shows the comparison of Taylor’s estimate and the direct measurement of
the cross-correlation coefficient Rτu(�x,y) for the weakest pressure gradient PG1 at
six representative wall-normal locations. Except for the first two wall-normal locations
at station T6 (�x = 0.01 m), overall agreement between the two methods, within the
experimental uncertainty, is quite reasonable, giving an indication of the validity of
Taylor’s hypothesis (with local mean velocity as the convection velocity). Note that
the apparent scatter in the present results (figures 20 and 21) should be compared
with the typical scatter in similar studies reported in the literature (see for example
Uddin, Perry & Marusic 1997). Such a comparison shows that the present scatter is
indeed very much typical of such studies and is therefore insignificant.

Figure 21 gives a similar comparison of Taylor’s estimate and the direct
measurement of Rτu(�x,y) for the strongest pressure gradient PG8. Again here,
within the experimental uncertainty, the agreement between the two methods is quite
reasonable, suggesting that even in such a strong-pressure-gradient situation, Taylor’s
hypothesis (with local mean velocity as the convection velocity) works fairly well over
the range of projection distances �xp (0–40 mm) used in this exercise. As mentioned
before, Taylor’s hypothesis is expected to work well even for downstream projections
though not demonstrated here.
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Figure 21. Cross-correlation coefficient Rτu(�x,y) at six representative wall-normal locations
for pressure gradient PG8. The solid line indicates Taylor’s estimate, while the circles indicate
the direct measurement with zero time delay. The SHW is at L3 (�x =0), and the HW is at
M3 (�x = 0.04 m). Note the change of scale for the ordinate.

The apparent disagreement between Taylor’s estimate and the direct measurement
at the first two wall-normal locations at station T6 (�x = 0.01 m), as seen in
figures 20(a, b) and 21(a), deserves some discussion. The first reason one might
suspect for such disagreement is the possible contamination of flow caused by the
presence of the SHW. This contaminated flow would be seen by the HW especially
when it is close to the wall. If one considers the SHW sensor as a small step in the
flow (of height h = 60 μm approximately), then the flow over it may be described as
having ‘two weak perturbations’ according to Bradshaw & Wong (1972), one before
and one after the step. These perturbations are ‘weak’ because the ratio of step height
h to local boundary layer thickness δ is approximately 0.004 which is far less than
unity. For ‘strong’ perturbations h/δ =O(1), and these situations are studied notably
by Bradshaw & Wong (1972) (experiments and calculations) and Le, Moin & Kim
(1997) (DNS). These studies have concluded that the relaxation of flow to the normal
boundary layer downstream of the step is a very slow process and typically takes
more than 50 step heights when h/δ = O(1). Such a slow relaxation may be attributed
to the fact that these ‘strong’ perturbations essentially alter the outer layer structure
which is known to have long memory (see Clauser 1956) in comparison with the inner
layer which recovers relatively quickly, possibly because of the influence of the wall.
In the present cases, since the ratio h/δ 	 1, only the part of inner layer very close
to the wall is going to be perturbed because of the presence of the SHW. In view
of the above-given discussion, this effect is expected to dissipate quickly downstream
and not extend to distances as large as, say, 50h. Thus the disturbance caused by
the SHW affecting either Taylor’s estimate or the direct measurement appears to be
unlikely in the present study.

The second and the likely reason however appears to be the uncertainty in the
measured wall-normal distance at station T6. For stations T1–T5, the distance of the
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HW sensor from the wall was measured by setting the zero reading for the wall-normal
distance using the electrical continuity method. This method involved establishment of
electrical continuity between the electrically conducting test plate and the HW sensor
by physically taking the HW probe down towards the plate and touching it very
carefully. This exercise was carried out at the free-stream velocity of measurement so
as to account for the true wall-normal distance that depends on the deflection of the
HW probe holder because of the loading caused by the flow. For station T6 however,
it was not possible to implement this method because of the presence of electrically
non-conducting Teflon plug that was carrying SHW L3. Station T6 was located
on the surface of this Teflon plug, and therefore the zero reading for wall-normal
distance of the HW sensor was decided essentially by eyeballing. The uncertainty in
the wall-normal distance, at T6, is therefore expected to be larger than that at the
remaining stations, and its effect is expected to be severe for the wall-normal locations
close to the plate. As one moves away from the wall further into the boundary layer,
one would expect this effect to reduce. This uncertainty in the wall-normal distance
would increase the uncertainty in the directly measured values of Rτu(�x,y) at
T6, especially because correlations do reach large values close to the wall, and the
reduction in correlation is relatively more rapid near the wall as compared with
distances farther away from the wall. This therefore appears to be the most probable
reason for the apparent disagreement seen at station T6 in figures 20 and 21. It is
worth noting that the behaviour of the eye of contour plots in the present study
and the inferred behaviour of the same from the data of Wark & Nagib (1991) are
remarkably similar, even though the former makes explicit use of Taylor’s hypothesis,
whereas the latter does not (see § 4.4 and figures 13 and 14). This implies that the
use of Taylor’s hypothesis in the present study is quite reasonable. It is to be noted
that other studies especially in atmospheric flows, where measurements have been
made very close to the wall, have successfully applied Taylor’s hypothesis (Marusic &
Heuer 2007) to estimate the structure inclination. This strengthens our view of the
uncertainty in the measured wall-normal distance at station T6 (and hence in the
direct measurement of Rτu(�x,y)) being the most probable reason for the apparent
disagreement between Taylor’s estimate of Rτu(�x,y) and the corresponding direct
measurement at station T6.

Figure 22 shows, in a compact manner, the direct value of the cross-correlation
coefficient Rτu(�x,y) plotted against the corresponding Taylor’s estimate for the
entire validation exercise. All the 6 streamwise stations (T1–T6), all the 11 wall-
normal locations (from 1 to 8mm) and all the 4 pressure gradients (PG1, PG3, PG6
and PG8) are covered in this figure. Clustering of all the data points around the 45◦

line (which indicates equality between the ordinate and the abscissa) confirms that
Taylor’s hypothesis (with local mean velocity as the convection velocity) works fairly
well for all the flows in the present study.

Before ending this section, few remarks on the possible conditions that are required
to be satisfied for the safe use of Taylor’s hypothesis in pressure-gradient-driven
boundary layer flows are in order. The presence of the streamwise pressure gradient
introduces a streamwise length scale L

′
= U∞/ (dU∞/dx) (see also Dixit & Ramesh

2008). One chief requirement therefore appears to be that the projection distance
�xp (see figure 1b) must be much smaller in comparison with L

′
, i.e. �xp/L

′ 	 1.
In the present study, the maximum value of �xp is 60 mm (with the negative time

shift), while L
′
is typically of the order of a metre or so. Thus in the present study,

�xp is only about 6 % of L
′
, a possible reason for the observed validity of Taylor’s

hypothesis. Another related aspect is that while using Taylor’s hypothesis, we use the
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Figure 22. The direct value of the cross-correlation coefficient Rτu(�x,y) plotted against the
corresponding Taylor’s estimate for all the data in the validation exercise. The 45◦ solid line
indicates equality between the ordinate and the abscissa.

local mean velocity at the HW location as the ‘constant’ convection velocity. However
over the projection distance �xp , the local mean velocity and hence the convection
velocity are not strictly constant because of the presence of the pressure gradient. Thus
the use of Taylor’s hypothesis with constant convection velocity would be permissible
only if the fractional change in local mean velocity (which may be taken to be of the
order of fractional change in U∞) over the projection distance were small. Note that
the condition �xp/L

′ 	 1 already takes this aspect into account. Yet another, but
again related, consideration could be the inclination of the mean streamlines of the
flow. If the streamlines are converging (accelerating flow) or diverging (decelerating
flow) rapidly, large projection distances would be inappropriate. In the present case,
the angle of a mean streamline at the edge of the boundary layer is typically 1◦ so
that a projection distance of 40 mm amounts to 0.7 mm wall-normal displacement
away from the same streamline at the boundary layer edge. Inside the boundary layer
this effect would be still less severe.

In view of these considerations, we may justify the streamwise spatial separation of
40 mm between the SHW and HW probes. For all the present flow cases, the large-
scale structure detected mostly resides upstream of the HW except for PG6–PG8.
Thus for the most part of the present study, only positive time delays are adequate.

7. Convection velocities from space–time correlations
Before proceeding further with the present results, it is instructive to briefly

recapitulate the relevant literature on convection velocities and Taylor’s hypothesis.
For structure angle measurements, Brown & Thomas (1977) have used HW and
shear stress sensors for two-point cross-correlations and have found that the structure
convection velocity is almost constant with the distance from the wall and is given
by Uc = 0.8U∞ which is consistent with the suggestion of Hussain (1983). The validity
of Taylor’s hypothesis for inferring structure angles in ZPG turbulent boundary
layer flows has been demonstrated by Uddin et al. (1997). They have used two HW
probes for obtaining two-point correlations and have shown that a convection velocity
Uc = 0.8U∞ is more appropriate to use than the local mean velocity U (y). Krogstad,
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Kaspersen & Rimestad (1998) have also used two-point correlations using two HW
probes and have found that the ‘event’ convection velocity is a function of both the
distance from the wall and the ‘scale’ of the detected event (a sweep or an ejection),
which is an interesting observation. For the large-scale events they have found that
the convection velocity is very close to the local mean velocity. Österlund (1999), by
making use of the two-point cross-correlation between the wall-shear stress fluctuation
and the streamwise velocity fluctuation, has demonstrated that the convection velocity
of the structure is constant close to the wall up to y+ of about 30, and from there
outwards it closely matches with the local mean velocity. Marusic (2001) has used
Uc = 0.8U∞ for inferring structure angles in laboratory ZPG turbulent boundary layers
using two HW probes. Marusic & Heuer (2007) have recently shown that the inferred
structure angle results strongly depend upon the wall-normal separation between two
velocity measuring probes. Instead they have suggested that measurement of structure
inclination angle is more robust if a shear stress probe is used in conjunction with a
velocity probe to obtain the two-point cross-correlation. They have used Uc = U (y)
for inferring structure angles in the laboratory ZPG turbulent boundary layers as
well as in the near-neutral atmospheric surface layer on the Utah salt flats. Dennis &
Nickels (2008) have demonstrated that Taylor’s hypothesis works quite well for the
entire turbulence field at least up to projection distances of about 6δ, where δ is
the boundary layer thickness. Their measurements have been done using PIV in the
logarithmic region of a ZPG turbulent boundary layer. At the wall-normal location
of their investigation, they have found that the appropriate convection velocity Uc

in the plane of measurement is about 84 % of the free-stream velocity U∞ and is
almost equal to the local mean velocity U (y). From this observation Dennis & Nickels
(2008) have noted that the convection velocity corresponds very well with the local
mean velocity, at least at the wall-normal location of their investigation. It is to be
noted that all the above-mentioned references have made use of the ZPG turbulent
boundary layer flow for these investigations.

In this section, we now discuss the appropriate choice of structure convection
velocity for the present experiments. The exercise for validating Taylor’s hypothesis
also allowed estimation of the convection velocities of the large-scale structure.
Referring to figure 19, if the HW probe is at a given grid point and the SHW probe is
at L3, the exercise of Taylor’s hypothesis validation makes use of the ‘zero-time-delay’
(�t =0) correlation between the two fluctuating signals τ (t) and u (t) to get the
direct value of the cross-correlation coefficient Rτu(�x,y). Now for the same pair of
signals, one may delay the u (t) signal and find out the time delay �t =�tmax for
which the cross-correlation coefficient reaches its maximum. Furthermore since the
HW probe is located at a known grid point, �x is known. For a given y-level, �tmax

is obtained corresponding to each known �x (total seven stations, M3 and T1–T6),
and the plot of �x versus �tmax is constructed. This plot is typically seen to exhibit
a fairly linear behaviour, and the slope of best-fit line (least squares method) gives
the local convection velocity Uc(y) at that y-level (see Österlund 1999).

This exercise of obtaining the local convection velocity Uc(y) was carried out
for all the four pressure gradients (PG1, PG3, PG6 and PG8) mentioned in the
previous section. Figure 23 illustrates the above-mentioned procedure for extreme
pressure gradients PG1 and PG8. Since the peak correlation occurs closer to the
HW location for stronger pressure gradients, the wall-normal extent available for
convection velocity estimation is limited for PG8 as compared with PG1 (see figure 23).

Figure 24(a) shows the local convection velocity Uc(y) compared with the local
mean velocity U (y) for four pressure gradients PG1, PG3, PG6 and PG8. It may be
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Figure 24. Comparison of the convection velocity Uc(y) with (a) the local mean velocity U (y)
and (b) the average mean velocity Uavg (y), for different pressure gradients: � and �, PG1; �

and �, PG3; � and �, PG6; � and �, PG8. The solid symbols indicate Uc(y), and the hollow
symbols indicate U (y) or Uavg (y).

seen that the variation of convection velocity with y is similar to that observed by
Österlund (1999) in a ZPG flow. Further it may be observed that for all the pressure
gradients, Uc(y) is always of the order of 90 % of U (y).

It was noted in the last paragraph of § 6 that the local mean velocity and hence the
convection velocity are not strictly constant in the streamwise direction because of
the presence of the streamwise pressure gradient. Thus we may interpret the measured
convection velocity Uc(y) to be the ‘average’ convection velocity, where the average is
taken over the range of �x values from which Uc(y) is calculated. It therefore appears
more appropriate to compare Uc(y) with the average local mean velocity Uavg (y)
where the average is taken, say, over streamwise spatial separation �x0 = 40 mm
between the SHW and HW probes. Figure 24(b) shows the comparison of Uc(y) and
Uavg (y). It is clear from figure 24(a, b) that Uc(y) indeed agrees more closely with
Uavg (y) than with U (y), indicating that the spatial averaging is taking place.
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We may now conclude that the experimentally determined local convection velocity
Uc(y) is not very different from the local mean velocity (of the order of 90 % of U (y))
at least over the range of wall-normal distance covered in this exercise. Since the
structure under consideration is a large-scale structure, this finding is not inconsistent
with those of Krogstad et al. (1998), Dennis & Nickels (2008) and Österlund (1999)
even though the flow under investigation in those cases was a ZPG turbulent boundary
layer flow. This justifies the use of local mean velocity as convection velocity in the
present study while using Taylor’s hypothesis and indicates that a typical structure in
the present study gets convected downstream almost along with the mean flow.

8. Conclusions
In the current paper, various aspects of the large-scale structure in turbulent and

reverse-transitional boundary layers subjected to streamwise FPGs have been invest-
igated. The so-called sink flow configuration has been used to study these boundary
layers, since this type of flow is in ‘perfect equilibrium’ in the sense of Townsend (1956,
1976) and Rotta (1962). The use of sink flow configuration allows systematic char-
acterization of the large-scale structure with the strength of the FPG as a parameter
where the characterization is not contaminated by the upstream history effects.

The large-scale structure is identified by cross-correlating the wall-shear stress
fluctuation with the streamwise velocity fluctuation. The structure orientation is
found to be linear over a large wall-normal extent typically extending from y/δ =
0.1 to y/δ = 0.6. Beyond y/δ =0.6, the correlation under consideration becomes very
weak to allow any conclusive result. The average structure inclination angle αavg is
found to decrease systematically with increase in the streamwise FPG. This result is
important and has implications towards modelling of the near-wall region. Further it
is found that the structure gets elongated considerably as the FPG is increased, i.e.
the streamwise spatial extent of the structure increases. Taken together, it is observed
that the structure becomes flatter and longer with the increase in the FPG. Structural
models are proposed for sink flow turbulent boundary layers in the form of either the
shape of individual hairpin vortices or the possible structural self-organization. These
models are then discussed in the light of the present experimental results. It is also
shown that the process of relaminarization of a turbulent boundary layer by a strong
FPG (the so-called soft relaminarization) may be better appreciated by appealing to
these structural models.

The validity of Taylor’s hypothesis for structure angle measurements in the present
study has been established experimentally. This exercise is important because the
flows under consideration are highly accelerated and are sometimes even reverse
transitional. In most of the previous work on the validity of Taylor’s hypothesis, at
least for the measurements similar to the present work, emphasis has been on ZPG
turbulent boundary layers. The present exercise is therefore crucial for accelerating
flows. Possible reasons for the observed validity of Taylor’s hypothesis have also been
identified – specifically it is seen that the condition �xp/L

′ 	 1 needs to be met for

Taylor’s hypothesis to be valid in pressure gradient flows, where L
′
= U∞/(dU∞/dx)

is the length scale which the streamwise pressure gradient introduces and �xp is the
projection distance in Taylor’s hypothesis (see figure 1b).

The investigation of structure convection velocity from space–time correlations has
revealed that the convection velocity in the present work is fairly close to the local
mean velocity of the flow (more than 90 %), which implies that the structure gets
convected downstream almost along with the mean flow.
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